Creep and fracture of metals : mechanisms and mechanics
نویسنده
چکیده
Modern methodologies that aim to reduce conservatism in the design of components operating at high temperatures rely on accurate predictions of materials’ behaviour in conditions relevant to those experienced in service. This requirement has focussed the attention of materials engineers on developing a quantitative understanding of damage-accumulation in engineering alloys. The microstructure of metallic materials can degrade by several mechanisms at rates that depend; (i) on temperature; (ii) often on stress level or state; and (iii) sometimes on the chemistry of the surrounding fluid environment. In this paper, some recent developments in the modelling of damage processes have been reviewed; in particular, the single state variable approach has been assessed and the potential benefits of using two state variables outlined. Also, a two-bar mechanical analogue has been used to quantify certain features of creep deformation associated with grain boundary cavitation and the close agreement between theory and experiment is demonstrated. A model for the creep damage associated with the evolution of the dislocation substructure in nickel-base superalloys has been developed further and experimental support for an unusual feature of the model has been demonstrated. Revue Phys. Appl. 23 (1988) 605-613 AVRIL 1988, : Classification Physics Abstracts 62.20
منابع مشابه
The Fracture Mechanics Concept of Creep and Creep/Fatigue Crack Growth in Life Assessment
There is an increasing need to assess the service life of components containing defect which operate at high temperature. This paper describes the current fracture mechanics concepts that are employed to predict cracking of engineering materials at high temperatures under static and cyclic loading. The relationship between these concepts and those of high temperature life assessment methods is ...
متن کاملTemperature Effect on Creep and Fracture Behaviors of Nano-SiO2-composite and AlSi12Cu3Ni2MgFe Aluminum Alloy
In the presented article, the temperature effect was studied on creep properties and fracture behaviors of AlSi12Cu3Ni2MgFe aluminum-silicon alloys, unreinforced and reinforced with SiO2 nano-particles. For such objective, standard specimens were fabricated by gravity casting and stir-casting methods, for aluminum alloys and nano-composites, respectively. Then, force-controlled creep...
متن کاملAnalysis of the Fracture of a Turbine Blade
The cause of crack initiation turbine blade had initially cracked by a fatigue mechanism over a period of time and then fractured by the overload at the last moment. Experimental procedure consists of macroscopic inspection, material verification, microscopic examination, and metallographic analysis and finally FE. And for these procedures, some specimens were prepared from a fractured blade. Us...
متن کاملGeometrical Optimization of the Cast Iron Bullion Moulds Based on Fracture Mechanics
In this paper, the causes of the crack initiation in cast iron bullion moulds in Meybod Steel Corporation are investigated and then some new geometrical models are presented to replace the current moulds. Finally, among the new presented models and according to the life assessment, the best model is selected and suggested as the replaced one. For this purpose, the three recommended moulds were ...
متن کاملEffects of Magnetic Field in Creep Behavior of Three-Phase Laminated Composite Cylindrical Shells
Due to the importance effect of magnetic field on the history of long-term radial and circumfer-ential creep strain and radial displacement for a three-phase nano-composite exposed to an internal pressure and placed uniform temperature, the present article subject has been pro-posed. Three-phase nano-composite made of single-walled carbon nano tubes (SWCNTs)/ glass fiber (GF)/vinylester used to...
متن کامل